7 resultados para Group B streptococci (GBS)

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common known clearly hereditary cause of colorectal and endometrial cancer (CRC and EC). Dominantly inherited mutations in one of the known mismatch repair (MMR) genes predispose to HNPCC. Defective MMR leads to an accumulation of mutations especially in repeat tracts, presenting microsatellite instability. HNPCC is clinically a very heterogeneous disease. The age at onset varies and the target tissue may vary. In addition, families that fulfill the diagnostic criteria for HNPCC but fail to show any predisposing mutation in MMR genes exist. Our aim was to evaluate the genetic background of familial CRC and EC. We performed comprehensive molecular and DNA copy number analyses of CRCs fulfilling the diagnostic criteria for HNPCC. We studied the role of five pathways (MMR, Wnt, p53, CIN, PI3K/AKT) and divided the tumors into two groups, one with MMR gene germline mutations and the other without. We observed that MMR proficient familial CRC consist of two molecularly distinct groups that differ from MMR deficient tumors. Group A shows paucity of common molecular and chromosomal alterations characteristic of colorectal carcinogenesis. Group B shows molecular features similar to classical microsatellite stable tumors with gross chromosomal alterations. Our finding of a unique tumor profile in group A suggests the involvement of novel predisposing genes and pathways in colorectal cancer cohorts not linked to MMR gene defects. We investigated the genetic background of familial ECs. Among 22 families with clustering of EC, two (9%) were due to MMR gene germline mutations. The remaining familial site-specific ECs are largely comparable with HNPCC associated ECs, the main difference between these groups being MMR proficiency vs. deficiency. We studied the role of PI3K/AKT pathway in familial ECs as well and observed that PIK3CA amplifications are characteristic of familial site-specific EC without MMR gene germline mutations. Most of the high-level amplifications occurred in tumors with stable microsatellites, suggesting that these tumors are more likely associated with chromosomal rather than microsatellite instability and MMR defect. The existence of site-specific endometrial carcinoma as a separate entity remains equivocal until predisposing genes are identified. It is possible that no single highly penetrant gene for this proposed syndrome exists, it may, for example be due to a combination of multiple low penetrance genes. Despite advances in deciphering the molecular genetic background of HNPCC, it is poorly understood why certain organs are more susceptible than others to cancer development. We found that important determinants of the HNPCC tumor spectrum are, in addition to different predisposing germline mutations, organ specific target genes and different instability profiles, loss of heterozygosity at MLH1 locus, and MLH1 promoter methylation. This study provided more precise molecular classification of families with CRC and EC. Our observations on familial CRC and EC are likely to have broader significance that extends to sporadic CRC and EC as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the first measurement of the ratio of branching fractions Bb0→Λc+μ-ν̅ μ)/Bb0→Λc+π-). Measurements in two control samples using the same technique B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-) and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-) are also reported. The analysis uses data from an integrated luminosity of approximately 172  pb-1 of pp̅ collisions at √s=1.96  TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be Bb0→Λc+μ-ν̅ μ)/Bb0→Λc+π-)=16.6±3.0(stat)±1.0(syst)+2.6/-3.4(PDG)±0.3(EBR), B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-)= 9.9±1.0(stat)±0.6(syst)±0.4(PDG)±0.5(EBR), and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-)=16.5±2.3(stat)± 0.6(syst)±0.5(PDG)±0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new Λb0 semileptonic decays: Λb0→Λc(2595)+μ-ν̅ μ, Λb0→Λc(2625)+μ-ν̅ μ, Λb0→Σc(2455)0π+μ-ν̅ μ, and Λb0→Σc(2455)++π-μ-ν̅ μ, relative to the branching fraction of the Λb0→Λc+μ-ν̅ μ decay. Finally, the transverse-momentum distribution of Λb0 baryons produced in pp̅ collisions is measured and found to be significantly different from that of B̅ 0 mesons, which results in a modification in the production cross-section ratio σΛb0/σB̅ 0 with respect to the CDF I measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human adenoviruses (Ads) have been classified into six species (A to F) currently containing 55 serotypes. For almost 2 decades vectors derived from group C serotype Ad5 have been extensively used for gene transfer studies. These Ad5 based vectors are able to efficiently infect many mammalian cell types (including both mitotic and post-mitotic cells) through interaction with a primary attachment receptor, the coxsackie and adenovirus receptor (CAR). Despite the many advantages of Ad5 based vectors a number of limitations have affected their therapeutic application to many diseases. Although they can transduce many tissue types, Ad5 based vectors are unable to efficiently transduce several potential disease target cell types, including hematopoietic stem cells and malignant tumor cells. Therefore, newer vectors have been developed based on Ad serotypes other than Ad5. This thesis focuses on species B Ads. Species B Ads are comprised of three groups based on their receptor usage. Group 1 of species B Ads (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 (Ad3, Ad7, 14) share a common, unidentified receptor/s, which is not CD46 and which was tentatively named receptor X; Group 3 (Ad11) preferentially interacts with CD46, but also utilizes receptor X if CD46 is blocked. Species B group Ads are important human pathogens. Species B group 2 serotypes are isolated from patients with respiratory tract infections, whereas the Group 1 viruses are described as causing kidney and urinary tract infections. B-group Ad infections often occur in immunocompromised patients, including AIDS patients, recipients of bone marrow transplants, or chemotherapy patients. Recent studies performed in U.S. military training facilities indicate an emergence of diverse species B serotypes at the majority of sites. This included the group 1 serotype 21 and the group 2 serotypes 3, 7, and 14. CD46-targeting vectors derived from Ad35 and Ad11 are important tools for in vitro gene transfer into human stem cells, including hematopoietic stem cells and induced pluripotent stem cells. Ad35 and Ad11 have been used as tools for cancer therapy, because CD46 appears to be uniformely overexpressed on many cancers. Furthermore, receptor X-targeting vectors, i.e vectors derived from Ad3 or vectors containing Ad3 fibers have shown superior in the transduction of tumor cells both in vitro and in vivo and are currently being used clinically in cancer patients. While extensive basic virology studies have been done on Ad5, the information of species B group 1 interaction with CD46 is limited. Furthermore, the receptor for a major subgroup of species B Ads (receptor X) is unknown. The goal of this thesis was it therefore to better understand virological and translational aspects of species B Ads. The specific findings described in this thesis include i) the identification of CD46 binding sites within the Ad35 fiber knob, ii) the study of the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. iii) the study of the receptor usage of a newly emergent Ad14a, iv) the identification of desmoglein 2 as the receptor for Ad3, Ad7, Ad11, and Ad14, v) the delineation of structural details of Ad3 virus interaction with DSG2, and vi) the analysis of functional consequences of Ad3-DSG2 interaction. As a result of these basic virology studies two Ad-derived recombinant proteins have been generated that can be used to enhance cancer therapy by monoclonal antibodies.